Starting a Project from Scratch
So far we have been using a pre-made Cargo project to work with the nRF52840 DK. In this section we'll see how to create a new embedded project for any microcontroller.
Identify the microcontroller
The first step is to identify the microcontroller you'll be working with. The information about the microcontroller you'll need is:
1. Its processor architecture and sub-architecture
This information should be in the device's data sheet or manual. In the case of the nRF52840, the processor is an ARM Cortex-M4 core. With this information you'll need to select a compatible compilation target. rustup target list
will show all the supported compilation targets.
$ rustup target list
(..)
thumbv6m-none-eabi
thumbv7em-none-eabi
thumbv7em-none-eabihf
thumbv7m-none-eabi
thumbv8m.base-none-eabi
thumbv8m.main-none-eabi
thumbv8m.main-none-eabihf
The compilation targets will usually be named using the following format: $ARCHITECTURE-$VENDOR-$OS-$ABI
, where the $VENDOR
field is sometimes omitted. Bare metal and no_std
targets, like microcontrollers, will often use none
for the $OS
field. When the $ABI
field ends in hf
it indicates that the output ELF uses the hardfloat Application Binary Interface (ABI).
The thumb
targets listed above are all the currently supported ARM Cortex-M targets. The table below shows the mapping between compilation targets and ARM Cortex-M processors.
Compilation target | Processor |
---|---|
thumbv6m-none-eabi | ARM Cortex-M0, ARM Cortex-M0+ |
thumbv7m-none-eabi | ARM Cortex-M3 |
thumbv7em-none-eabi | ARM Cortex-M4, ARM Cortex-M7 |
thumbv7em-none-eabihf | ARM Cortex-M4F, ARM Cortex-M7F |
thumbv8m.base-none-eabi | ARM Cortex-M23 |
thumbv8m.main-none-eabi | ARM Cortex-M33, ARM Cortex-M35P |
thumbv8m.main-none-eabihf | ARM Cortex-M33F, ARM Cortex-M35PF |
The ARM Cortex-M ISA is backwards compatible so for example you could compile a program using the thumbv6m-none-eabi
target and run it on an ARM Cortex-M4 microcontroller. This will work but using the thumbv7em-none-eabi
results in better performance (ARMv7-M instructions will be emitted by the compiler) so it should be preferred. The older ISAs may also be limited in terms of the maximum number of interrupts you can define, which maybe be fewer than your newer microcontroller actually has.
2. Its memory layout
In particular, you need to identify how much Flash and RAM memory the device has and at which address the memory is exposed. You'll find this information in the device's data sheet or reference manual.
In the case of the nRF52840, this information is in section 4.2 (Figure 2) of its Product Specification. It has:
- 1 MB of Flash that spans the address range:
0x0000_0000
-0x0010_0000
. - 256 KB of RAM that spans the address range:
0x2000_0000
-0x2004_0000
.
The cortex-m-quickstart
project template
With all this information you'll be able to build programs for the target device. The cortex-m-quickstart
project template provides the most frictionless way to start a new project for the ARM Cortex-M architecture -- for other architectures check out other project templates by the rust-embedded organization.
The recommended way to use the quickstart template is through the cargo-generate
tool:
cargo generate --git https://github.com/rust-embedded/cortex-m-quickstart
But it may be difficult to install the cargo-generate
tool on Windows due to its libgit2
(C library) dependency. Another option is to download a snapshot of the quickstart template from GitHub and then fill in the placeholders in Cargo.toml
of the snapshot.
Once you have instantiated a project using the template you'll need to fill in the device-specific information you collected in the two previous steps:
1. Change the default compilation target in .cargo/config
[build]
target = "thumbv7em-none-eabi"
For the nRF52840 you can choose either thumbv7em-none-eabi
or thumbv7em-none-eabihf
. If you are going to use the FPU then select the hf
variant.
2. Enter the memory layout of the chip in memory.x
MEMORY
{
/* NOTE 1 K = 1 KiBi = 1024 bytes */
FLASH : ORIGIN = 0x00000000, LENGTH = 1M
RAM : ORIGIN = 0x20000000, LENGTH = 256K
}
3. cargo build
now will cross compile programs for your target device
If there's no template or signs of support for a particular architecture under the rust-embedded organization then you can follow the embedonomicon to bootstrap support for the new architecture by yourself.
Flashing the program
To flash the program on the target device you'll need to identify the on-board debugger, if the development board has one. Or choose an external debugger, if the development board exposes a JTAG or SWD interface via some connector.
If the hardware debugger is supported by the probe-rs
project -- for example J-Link, ST-Link or CMSIS-DAP -- then you'll be able to use probe-rs
-based tools like probe-rs
and cargo-embed
. This is the case of the nRF52840 DK: it has an on-board J-Link probe.
If the debugger is not supported by probe-rs
then you'll need to use OpenOCD or vendor provided software to flash programs on the board.
If the board does not expose a JTAG, SWD or similar interface then the microcontroller probably comes with a bootloader as part of its stock firmware. In that case you'll need to use dfu-util
or a vendor specific tool like nrfdfu
or nrfutil
to flash programs onto the chip. This is the case of the nRF52840 Dongle.
Getting output
If you are using one of the probes supported by probe-rs
then you can use the rtt-target
library to get text output on cargo-embed
. The logging functionality we used in the examples is implemented using the rtt-target
crate.
If that's not the case or there's no debugger on board then you'll need to add a HAL before you can get text output from the board.
Adding a Hardware Abstraction Layer (HAL)
Now you can hopefully run programs and get output from them. To use the hardware features of the device you'll need to add a HAL to your list of dependencies. crates.io, lib.rs and awesome embedded Rust are good places to search for HALs.
After you find a HAL you'll want to get familiar with its API through its API docs and examples. HAL do not always expose the exact same API, specially when it comes to initialization and configuration of peripherals. However, most HAL will implement the embedded-hal
traits. These traits allow inter-operation between the HAL and driver crates. These driver crates provide functionality to interface external devices like sensors, actuators and radios over interfaces like I2C and SPI.
If no HAL is available for your device then you'll need to build one yourself. This is usually done by first generating a Peripheral Access Crate (PAC) from a System View Description (SVD) file using the svd2rust
tool. The PAC exposes a low level, but type safe, API to modify the registers on the device. Once you have a PAC you can use of the many HALs on crates.io as a reference; most of them are implemented on top of svd2rust
-generated PACs.
Hello, 💡
Now that you've set up your own project from scratch, you could start playing around with it by turning on one of the DK's on-board LEDs using only the HAL. Some hints that might be helpful there:
- The Nordic Infocenter tells you which LED is connected to which pin.